
International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1404
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Improving the Operating System Resource
Management by Processes Simulation

Muhammad Imran1, Wadee Alhalabi2

Department of Computer Science
King Abdulaziz Univeristy, Jeddah, Saudi Arabia

mimran@stu.kau.edu.sa1
wsalhalabi@kau.edu.sa2

Abstract— Multiprocessing systems are in focus for every high performance processor family. With multiprocessing comes the problem of
scheduling which we have tried to address in this paper. In this paper, we have explained the resources and processes simulation that we
have designed to optimize the process scheduling task of operating systems. This explains how to model and simulate a system to
evaluate its performance and utilization and then analysing the results to go for the improvements in the real system. We have taken three
independent processes and five resources which consist of one or more instances, for our experiment and evaluation task. This paper
presents the implementation done in the C language provides option for the work to be adapted for modeling and simulation of any other
scheduling tasks that need to be performed by the OS. Then a proper set of results can be interpreted for target system improvements.

Index Terms— FCFS Scheduling, Multiprocessing, Operating System, Process Management, Processes Simulation, Process Scheduling,
Resources Management

——————————  ——————————

1 INTRODUCTION
HIS paper is an outcome of the simulation of processes
and resources management in an operating system. A de-
sign is prepared for the simulation purpose which is syn-

onymous to the operating system process management where
processes are being loaded into the memory and they keep on
requesting for the resources to complete their executions. One
of the aspects taken care while the designing was to make is
reusable where it might be made a component of some ad-
vanced process scheduler added in the OS. That process
scheduler will be using the simulation and use the output for
its input to generate the optimized sequencing and scheduling
for the processes currently in the memory. This paper explains
the experiment on the project in which three independent pro-
cesses accessing different resources having specified the num-
ber of resources required to complete its task. Every resource
has one or more instances that can be allocated to the process-
es upon their request. Any process being loaded into the
memory is supposed to have mentioned the resources it may
request for its task completion. Thus each process in the
memory needs a certain set of resources to get the work done.
The complete cycle, that consists of some finite number of
steps, which are needed to be performed keeping in view the
performance, efficiency makes a good size problem that is
modeled and simulated to get some results for taking the steps
for improvement in the process scheduling.

Main goal of this project is to analyze the bottlenecks in

dealing with process scheduling. As we are having multiple
resources where the processes request one after another in a
specified order, we need to figure out the best configuration
(sequence) of these resources request. Processes complete spe-
cific percentage of their task by getting each resource and us-
ing it for some amount of time. We need to analyze the bottle-

neck resources which are causing more delays and increasing
the waiting queue size. Moreover, by running the simulation
multiple times by changing the number of resource instances
(every instance with equal working ability), we will be looking
for the impact on overall performance. Also, by adding Job
Averaged Statistics and Time Averaged Statistics in the simu-
lation, we will be having a larger picture for the performance
analysis of our resources utilization.

2 LITERATURE REVIEW
The Operating System Simulation (OSS) system is an operat-
ing system simulation tool to simulate the multiprocessing
operating system which contains six major components, which
are process management, scheduler, memory management,
message management, semaphore management and resource
management [1]. OSS is used to get the clear understanding of
how an operating system works and to study the impact of
various algorithms on the performance of an operating sys-
tem. Operating systems provide many functions in which the
process management is one of the most important. For the
process management, various types of scheduling algorithms
are used. The scheduling algorithm’s main goals include best
CPU utilization, Throughput, T.T., Waiting Time (W.T.), Re-
sponse Time (R.T.) and threads fairness. In the last thirty years
there has been a huge amount of research in the area of disk
scheduling [2]. The main objective was to design the schedul-
ing algorithms with some verifiable properties. The CPU
switches among processes in the multi programming envi-
ronment and this is achieved by the use of CPU scheduling
techniques/algorithms. The OS should allow processes as
much as possible to run all time so the CPU utilization can be
maximized. Thus a number of processes are kept in memory

T IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1405
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

concurrently and each process is selected by the OS so that it
can occupy the CPU. Therefore, scheduling is an essential OS
function and nearly all the computer resources are scheduled
before they can be used [3], where the CPU is considered as a
primary resource. FCFS is one of the scheduling algorithms
known as the very basic for scheduling. It is a non-pre-
emptive algorithm in which we allocate the CPU first to the
process which comes first to access the CPU. A queue is made
for this purpose and processes join the queue. The running
process (one at a time) keeps the CPU and releases it only
when it has completed its execution. Then SJF focuses on the
shortest jobs/processes first which will take less time to do
their processing, and if there is a tie then FCFS is used here.
There exist pre-emptive and non-pre-emptive versions for this
algorithm [4].

3 PROBLEM STATEMENT
In this modeling and simulation, processes, resources with
several instances and each process having a resource request
sequence are considered as a single system. Two main compo-
nents of system are identified, which include resources and
the processes requesting the resources.

This system consists of 5 resources, all are working in paral-
lel. Each of the resource has one or more instances to serve the
processes, depending on the request made for that resource.
Table 1 shows the distribution of the instances that exists for
each resource.

TABLE 1

Instances Distribution at Resources

Resource # Resource No. of In-
stances

1 Resource 1 3
2 Resource 2 2
3 Resource 3 4
4 Resource 4 3
5 Resource 5 1

We have taken three process i.e. Process 1, Process 2, Pro-

cess 3. This categorization is based upon different natures pos-
sible for any independent processes. Theya are listed in Table
2.

TABLE 2

Process Types Used
Category # Process Type

1 Process 1
2 Process 2
3 Process 3

The Figures below, Fig.1, Fig.2 and Fig.3 depict the com-

plete picture of the system, showing the resource request se-
quence of each process.

Request Sequence for Process 1 Type Processes

Fig. 1 Request Sequence for Process 1 Type Processes

Request Sequence for Process 2 Type Processes

Fig. 2 Request Sequence for Process 2 Type Processes

Request Sequence for Process 3 Type Processes

Fig. 3 Request Sequence for Process 3 Type Processes

4 SOLUTION TOWARDS MODELING EXPERIMENT
As it has already been discussed that there are three types of
independent processes, we assigned the probabilities to each
of our processes. Process Type 1 has 30% chances of request-
ing the resources, Process Type 2 has 50% chances of request-
ing the resources and Process Type 3 has 20% chances of re-
questing the resources for its execution completion.

Table 3 shows the events that are to be occurred:

IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1406
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

TABLE 3

Events to Be Occurred
Event
Number

Event Description

1 Creation of a process in the System
2 Pre-emption of resource after process

has completed its task.
3 Execution completion of the process

In the above events list, the pre-emption of resource is pre-

emption of current resource, so it does not mean the process
being terminated. The process does not terminate and keeps
on requesting, acquiring and pre-empting the resources one
after another until it acquires and pre-empts the last resource
in its resource request sequence. Moreover, there are separate
queues for each resource in the system and to have more in-
formation of the states during the simulation we used some
data structure with the following attributes:

Process Type: contains the type of process
Time of arrival of process: the arrival time of the process to
the current resource’s waiting queue
Resource Number: it tells us about the current resource num-
ber which is acquired by the process.

To measure the delays in the queues of different resources,
while pre-empting one resource and requesting for the other,
we used some variables. To have the average delays (waiting
of process) in the queues of each resource throughout the re-
source request sequence of process, following variables are
used:

D1: delay in the queue of Resource 1
D2: delay in the queue of Resource 2
D3: delay in the queue of Resource 3
D4: delay in the queue of Resource 4
D5: delay in the queue of Resource 5

The above delays will be regardless of Process Type. These
will only tell the delays that are there in specific queues. To
find the Process Type specific delay we will be using separate
variables for each process type resulting in having three more
variables. Also keep in mind that these delays will now be
regardless of resources.

5 IMPLEMENTATION
The computational model of the simulation has its basis upon
the below discussed algorithms.
5.1 Request Function Algorithm
The ‘request’ function of the simulator is being used for two
purposes:

1. Event Function, which is called upon the loading of the new
process.
2. Called in the last when the process has completed its work

with one resource, pre-empting that resource and needs to
request the new resource.

Function ProcessStarted (isNewProcess)

1. If this is a new process
a. Schedule the new process event;
b. Generate the process type for this new process;

2. Determine the appropriate resource to be acquired by this

process based on process type

3. If all instances of this resource are allocated
a. Put the process to the end of the waiting queue

of this resource;
4. Else

a. Set the delay for this process to 0;
b. Make an instance, from that resource, Allocated

and get the statistics;
c. Schedule the finish event for that process;

Return;

5.2 Depart Function Algorithm
The ‘depart’ function is called, depending on the process

type and the current state of that process’s resource request
sequence, when the process finishes the task with one resource
and needs to request the new resource or has completed its
execution needing no more resources.

Function ProcessFinishedTask ()
1. Get the Resources that process has recently pre-empted.

2. If the wait queue of this resource has got empty

a. Set an instance of that resource to free/idle get
the Statistics;

3. Else
a. Remove the first process from the Queue of that

resource;
b. Compute the delay for this process and get the

statistics;
c. Schedule a finish event for this process;

4. Are there any more resources that this process needs to

request and acquire
a. Add 1 to resources for the finishing process;
b. Call the ‘ProcessStarted’ for this process by set-

ting the flag isNewProcess = false.
5. Else
Return;

The main flow of the processes simulation program can be

easily tracked from the main function of the program. The
simulation program uses text files for the purpose of input
and output of the running simulation. The input parameters
are thus set in a text file which is read by the program in its
beginning and then rest of the simulation is run and statistics
are gathered, after which the results are written to a text file.

IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1407
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The algorithmic representation of the main flow is as below:

Function Main()
1. Define the variables to be used for states representation

of the system.

2. Get input parameters for the simulation from specified
text file and store them locally

3. Initialize the things required for the simulation these
things include:

a. Storage allocation for the lists
b. Initialization of these lists and setting their

heads and tails
c. Initializing the simulation clock
d. Initializing the variables used for statistics pur-

poses

4. Schedule the loading of the first process

5. Repeat until the end Simulation event occurs
a. Determine the next event
b. Call appropriate event function (processStart

or processFinish)

6. Get all the statistics that were gathered and write them
to a text file.

7. Terminate

6 SIMULATION RESULTS
With the specific configuration used for our specific experi-
ment and detailed in this paper we ran the simulation with a
certain input file and analysed it by looking at the statistics,
we have concluded that the bottlenecks are at the resource 1, 2
and 4. The order of the severity depends on which statistics do
we consider i.e. average number of processes in queue, utiliza-
tion of the resource instances, or the average delay for the pro-
cesses in the queue.

The output generated by the simulation run of processes

simulation program is in Table 4 and Table 5.

TABLE 4

Simulation Run Output
Process Type
queue

Average total waiting time in waiting

1 Creation of a process in the System
2 Pre-emption of resource after process has

completed its task.
3 Execution completion of the process

Overall average process total delay = 12.836

TABLE 5
Simulation Run Output

Re-
source #

Avg. No.
in Queue

Avg. Uti-
lization

Avg. Waiting Time
in Queue

1 16.194 0.967 4.074
2 21.586 0.984 10.589
3 0.747 0.718 0.188
4 11.094 0.944 4.022
5 1.894 0.797 0.953

Fig.4 Resources performance graph

7 CONCLUSION
After running the simulation for the fine tuning of the pro-
cesses scheduling and resources utilization, we ran the simula-
tion for three more times by adding one more instance each
time one by one to each of the above mentioned bottleneck
resources i.e. 1, 2, and 4 (as the resource 3 and 5 seemed not to
be the bottlenecks).We wanted to check that adding an in-
stance for which resource will have the greatest impact on the
better resource utilization and process scheduling. By looking
at the Table 6, we note that an instance should be added to the
resource 4 as doing this will decrease the job delay to maxi-
mum as compared to adding the instances to other resources.

The results from these three simulation runs are show in
the Table 6.

TABLE 6
Simulation Run Results

————————————————
• Author Muhammad Imran is currently pursuing masters degree program

in Computer Science at King Abdulaziz Univeristy, Saudi Arabia, E-mail:
mimran@stu.kau.edu.sa

• Co-Author Dr. Wadee Alhalabi is currently Assistant Professor in De-
partment of Computer Science at King Abdulaziz Univeristy, Saudi Ara-
bia, E-mail: author_name@mail.com

IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 1408
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Number of instances of the resources in
our experiment

Over
all

Avg.
Job

Total
Delay

Rsc.
1

Rsc.#
2

Rsc.#
3

Rsc.#
4

Rsc.#
5

The Origi-
nal Configu-
ration of
instances

3 2 4 3 1 10.9

Adding in-
stance to
resource 1

4 2 4 3 1 8.1

Adding in-
stance to
resource 2

3 3 4 3 1 7.6

Adding in-
stance to
resource 4

3 2 4 4 1 7.5

Fig.5 Adding Instances to Resources

On adding the instances to the resources, the above graph
shows the results. We can see that with the original configura-
tion the delay was high and the minimum delay was found
when we added an instance to the Resource 4. Thus the bot-
tleneck having more impact is the resource 4. And better per-
formance in terms of less total average delay can be archived if
we add one more instance of the resource 4.

REFERENCES
[1] Hu, Ming (1998) Operating system simulation (OSS) in Java: the system archi-

tecture. (Thesis) http://spectrum.library.concordia.ca
[2] Seltzer, M P. Chen and J outerhout, 1990.Disk scheduling revisited in USE-

NIX. Winter technical conference.

[3] Sabrina, F.C.D, Nguyen, S.Jha, D. Platt and F. Safaei, 2005. Processing re-
sources scheduling in programmable networks. Computer community,
28:676-687.

[4] E.O. Oyetunji, A. E. Oluleye, Research Journal of Information Technology
1(1): 22-26, 2009, “Performance Assessment of Some CPU Scheduling Algo-
rithms”

IJSER

